THE ROTATIONAL SPECTRUM AND MOLECULAR PROPERTIES OF CHLORYL CHLORIDE, CICIO2 HOLGER S. P. MULLER, AND EDWARD A. COHEN, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109. ClClO₂ is slightly higher in energy than its structural isomer ClOOCl, which has been implicated in Polar ozone depletion processes. C1C1OZ may be formed from other CL O_y compounds on or in stratospheric ices. ^b Therefore, its millimeter and submillimeter spectrum has been studied in a flowing system as a product of the FClO₂ + HC1 reaction. The pyramidal C1C1OZ is an asymmetric prolate top, $\kappa = -0.7598$ for 35 Cl 35 ClO₂. It has C_s symmetry with a strong dipole component along the c-axis and a smaller one along the a-axis. The highest quantum numbers accessed are larger than 50 and 30 for J and K_a , respectively, permitting rotational and centrifugal distortion constants to be determined precisely. Splittings due to both Cl nuclei have been resolved, and a quadruple analysis will be presented. The molecular structure has been derived from isotopomers involving 35 Cl and 37 Cl. The results will be compared with those frOm an earlier matrix-isolation study, d from ab initio calculations, a and from data of related molecules. Time required: 15 min Session in which paper is recommended for presentation: 7 ^aT. J. Lee, C. McMichael Rohlfing, and J. E. Rice, J. Chem. Phys., 97, 6593, (1992) ^bC. J. Pursell, J. Conyers, and C. Denisen, J. Phys. Chem., 100, 15450, (1996) ^cJ. D. Graham, J. T. Roberts, L. D. Anderson, and V. H. Grassian, J. Phys. Chem. 100, 19551, (1996) ^dH. S. P. Müller and H. Winner, Inorg. Chem. 31, 2527, (1992)